A Graphic Method for the Determination of Monomer Reactivity Ratios

The instantaneous copolymer composition equation for a binary components system

$$F_1 = 1 - F_2 = \frac{r_1 f_1^2 + f_1 f_2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2} \tag{1}$$

has been used for determining monomer reactivity ratios. Equation (1) has been rearranged in the form by Fineman and $Ross^1$ as follows:

$$\frac{f_1(1-2F_1)}{F_1(1-f_1)} = r_2 + \frac{f_1^2(F_1-1)}{F_1(1-f_1)^2}r_1$$
(2)

The monomer reactivity ratios r_i are then determined graphically. The r_i values are estimated from the slope and intercept of the plot of $f_1(1-2F_1)/F_1(1-f_1)$ against $f_1^2(F_1-1)/F_1(1-f_1)^2$, respectively. The disadvantage of this method is that it is sometimes difficult to make a decision regarding the best straight line through a set of points since linear least-squares procedures are not appropriate.² In this work, using eq. (1), we propose a new graphic procedure for determining r_i . In this method, the r_i values are directly determined from both intercepts of the plot of f_1f_2/F_1F_1 vs. f_1 or F_1F_2/f_1f_2 vs. f_1 . The procedure for making the plot is very simple and the linear least-squares procedure is unnecessary.

Equation (1) is rewritten as

$$\frac{f_1}{F_1} = \frac{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2}{r_1 f_1 + f_2} \tag{3}$$

and then its limiting value at $f_1 = 0$ is found to be

$$\lim_{f_1 \to 0} (f_1/F_1) = r_2 \tag{4}$$

Equation (1) is further rearranged to be

$$F_2 = \frac{f_1 f_2 + r_2 f_2^2}{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2}$$

or

$$\frac{f_2}{F_2} = \frac{r_1 f_1^2 + 2f_1 f_2 + r_2 f_2^2}{f_1 + r_2 f_2} \tag{5}$$

The limiting value of f_2/F_2 at $f_1 = 0$ is also solved:

$$\lim_{f_1 \to 0} (f_2/F_2) = 1 \tag{6}$$

The combination of eqs. (4) and (5) yields

$$\lim_{f_1 \to 0} (f_1/f_2/F_1F_2) = r_2 \tag{7}$$

Similarly, we solve the limiting values of f_1/F_1 and f_2/F_2 at $f_2 = 0$ or $f_1 = 1$ for eqs. (3) and (5) and obtain

$$\lim_{f_1 \to 1} (f_1/F_1) = 1 \tag{8}$$

$$\lim_{f_1 \to 1} (f_2/F_2) = r_1 \tag{9}$$

$$\lim_{f_1 \to 1} (f_1 f_2 / F_1 F_2) = r_1 \tag{10}$$

Journal of Applied Polymer Science, Vol. 27, 2747–2750 (1982) © 1982 John Wiley & Sons, Inc. CCC 0021-8995,

CCC 0021-8995/82/072747-04\$01.40

Data for Determining the Monomer Reactivity Ratios			
System	f_1	F_1	
Styrene-methyl methacrylate ^{3,4}	0.048	0.093	
	0.100	0.171	
	0.111	0.168	
	0.234	0.317	
	0.300	0.371	
	0.478	0.493	
	0.500	0.510	
	0.699	0.647	
	0.700	0.648	
	0.900	0.844	
Methyl methacrylate-isoprene ⁵	0.100	0.112	
	0.300	0.261	
	0.500	0.424	
	0.700	0.547	
	0.800	0.576	
	0.850	0.676	
	0.900	0.724	
	0.950	0.843	
	0.957	0.888	
Acrylonitrile–ethyl acrylate ⁶	0.380	0.439	
	0.525	0.569	
	0.647	0.697	
	0.741	0.777	
	0.823	0.850	
	0.917	0.930	
Vinyl acetate–methyl methacrylate ⁷	0.19	0.01	
	0.37	0.02	
	0.54	0.05	
	0.70	0.08	
	0.86	0.17	
	0.97	0.56	

2748

Fig. 1. Determination of reactivity ratios of monomers for styrene-methyl methacrylate system from intercepts of the plot of f_1f_2/F_1F_2 vs. f_1 : (\blacktriangle) Ref. 3; (O) Ref. 4.

Fig. 2. Determination of reactivity ratios of monomers for methyl methacrylate-isoprene system from intercepts of the plot of f_1f_2/F_1F_2 vs. f_1 .

Fig. 3. Determination of reactivity ratios of acrylonitrile-ethyl acrylate system from intercepts of the plot of f_1f_2/F_1F_2 vs. f_1 .

Monomer Reactivity Ratios Obtained by This Method and Literature Values			
Systems	This method (r ₁ , r ₂)	Literature values (r_1, r_2)	Remarks
Styrene-methyl methacrylate	(0.53, 0.45)	$(0.52 \pm 0.026, 0.46 \pm 0.026)^8$	60°C
Methyl methacrylate-isoprene	(0.22, 0.71)	$(0.22, 0.72)^5$	60°C
Acrylonitrile-ethyl acrylate	(1.18, 0.68)	$(1.17 \pm 0.1, 0.67 \pm 0.02)^9$	50°C
Methyl methacrylate-vinyl acetate	(21.2, 0.016)	$(20 \pm 3, 0.015 \pm 0.015)^{10}$	60°C

TABLE II

According to eqs. (7) and (10), we plot f_1f_2/F_1F_2 against f_1 or f_2 . Then, the monomer reactivity ratios may be found from the intercepts of the curve at $f_1 = 0$ and $f_1 = 1$ simultaneously. We do not suggest that the r_i values be determined by use of eqs. (4) and (9). The main reason is that the plot of f_1f_2/F_1F_2 against f_1 gives a much more smooth curve than the plot of f_1/F_1 against f_1 or f_2/F_2 against

Fig. 4. Determination of reactivity ratios of monomers for vinyl acetate-methyl methacrylate system from intercepts of the plot of f_1f_2/F_1F_2 vs. f_1 .

 f_1 does. The other reason is that the former procedure needs only one plot for estimating r_i , but the latter technique requires two plots for finding r_i .

This method was verified by testing four copolymerization systems: styrene(1)-methyl methacrylate(2), methyl methacrylate(1)-isoprene(2), acrylonitrile(1)-ethylacrylate(2), and vinyl acetate(1)-methyl methacrylate(2). The data of Bevington et al.,³ Kuo and Chen,⁴ Haward,⁵ Brandrup,⁶ and Atherton and North⁷ shown in Table I, were used to make the plots of Figures 1 to 4. The monomer reactivity ratios r_1 and r_2 for the illustrated four systems were obtained from the intercepts of the plots at $f_1 = 1$ and 0, respectively. The subindex 1 and 2 denote monomers 1 and 2, respectively. The results were given in Table II. For the MMA-VAc system the monomer reactivity ratios were determined from the logarithmic plot of f_1f_2/F_1F_2 vs. f_1 instead of using the ordinary plot, because the reactivity ratio for vinyl acetate is very small, i.e., $r_1 = 0.015$. If the ordinary plot is used, then the intercept for r_1 is too small for a precision determination. The literature values of these four copolymerizations are also listed in the same table. We find that the monomer reactivity ratios determined by this method are in very good agreement with the literature values.

References

1. M. Fineman and S. D. Ross, J. Polym. Sci., 5, 269 (1950).

2. R. M. Joshi, J. Macromol. Sci. Chem., A7, 1231 (1973).

3. J. C. Bevington, H. W. Melville, and R. P. Taylor, J. Polym. Sci., XIV, 463 (1954).

4. J. F. Kuo and C. Y. Chen, unpublished data.

5. R. N. Haward, Developments in Polymerization, Vol. 2, Applied Science Publishers, London, 1979, p. 30.

6. J. Brandrup, Faserforsch. Textiltech., 12, 133 (1961).

7. J. N. Atherton and A. M. North, Trans. Faraday Soc., 58, 2049 (1962).

8. F. M. Lewis, C. Walling, W. Cummings, E. R. Briggs, and F. R. Mayo, J. Am. Chem. Soc., 70, 1519 (1948).

9. J. Brandrup, Faserforsch. Textiltech., 12, 135 (1961).

10. F. R. Mayo, C. Walling, F. M. Lewis, and W. F. Hulse, J. Am. Chem. Soc., 70, 1523 (1948).

Jen-Feng Kuo Chuh-Yung Chen

Department of Chemical Engineering National Cheng-Kung University Tainan, Taiwan 700, Republic of China

Received October 16, 1981 Accepted January 29, 1982